

http://vcell.org

The Virtual Cell Project

National Institute of General Medical Sciences

Biomedical Technology Research Centers

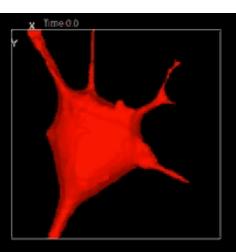
Michael Blinov

VCeII is accessible to the experimental biologist as a fully modular computational framework to model the spatially organized and interdependent chemical events that underlie dynamic collular processes. An intuitive interface assists in creating a Biomodel of biochemical reactions, transport mechanisms and compartmental anganization. From this single Biomodel, multiple applications can be created to exercise the model as well-mixed compartments (ODI), spatially discrete deterministic (PDE), stochastic well-mixed compartments (Gilespie), stochastic spatial model, or hybrid PDEspatial stochastic. A fully-integrated Rule-Based editor allows rulebased approaches to be integrated Rule-Based editor allows rulebased approaches to be integrated within compartmental models for either network generation or for network-free simulation.

Ann Cowan

Why VCell?

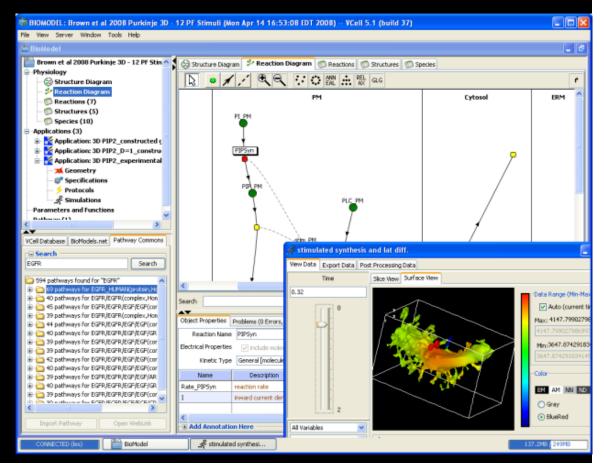
Free to use; the web-based architecture does not require configuration for a specific operating system.
 nexperience modelers enter reactions and pathways in an intuitive BioModel interface – VCell
 utomatically creates the math for you. Experienced modelers can enter math directly in the MathModel

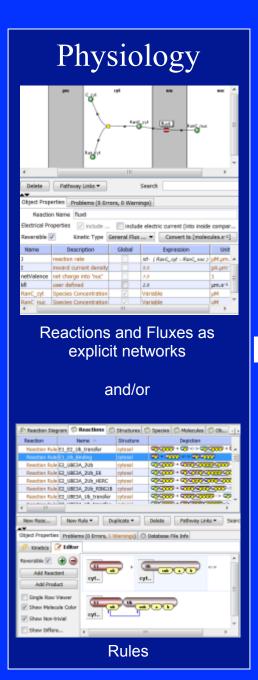

- vulations can run on remote servers; no need for extensive local compute facilities; run simulations from
- is stored on VCell servers so models and simulations can be accessed from anywhere.
- a sharing models among groups of collaborators or to the public. Hundreds of public models are the in the database for reuse by other investigators.
- specification and simulation of spatially-resolved models using different types of geometry: imageanalytic and constructive solid geometry (CSG).
- del can be used for simulations with different solvers: ODE, PDE, stochastic (Gillespie or spatial) spatial-stochastic
- of rule-based and network-free modeling.
- Saccess in modeling and natiway database

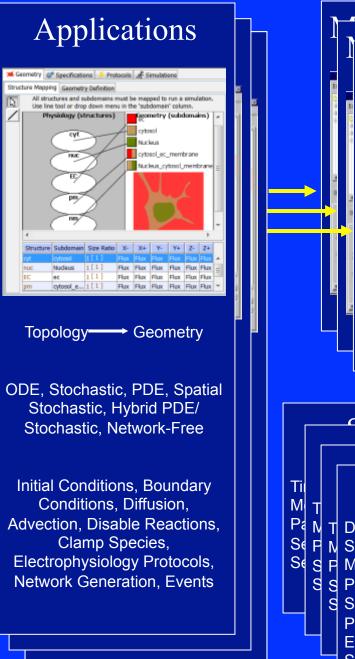
VCell.org

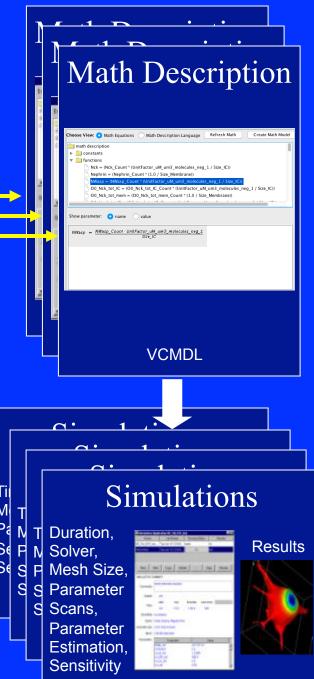
The Virtual Cell Project

 $-\operatorname{div} \boldsymbol{F}_i + R_i$

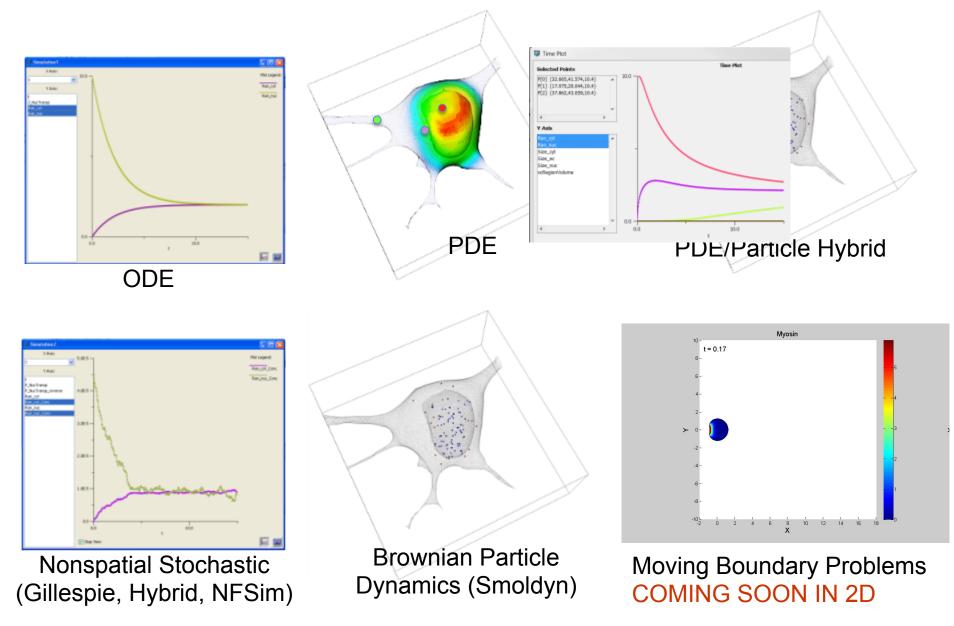


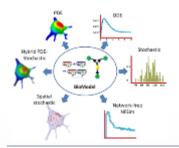

✓ 5,800 users who built models
✓ Graphical interface for biologists
& physical scientists


 ∂C_i


A

- Reactions, diffusion, advection, membrane transport, electrophysiology
- Compartmental (ODE), spatial (PDE), deterministic and stochastic simulations
- ✓ Rule-based & network-free modeling options
- ✓ Searchable model database
- ✓ Pathway database support
- ✓ Experimental data integration✓ Virtual Microscopy




Simulations with Multiple Physical Approximations

BioModel → MathModel

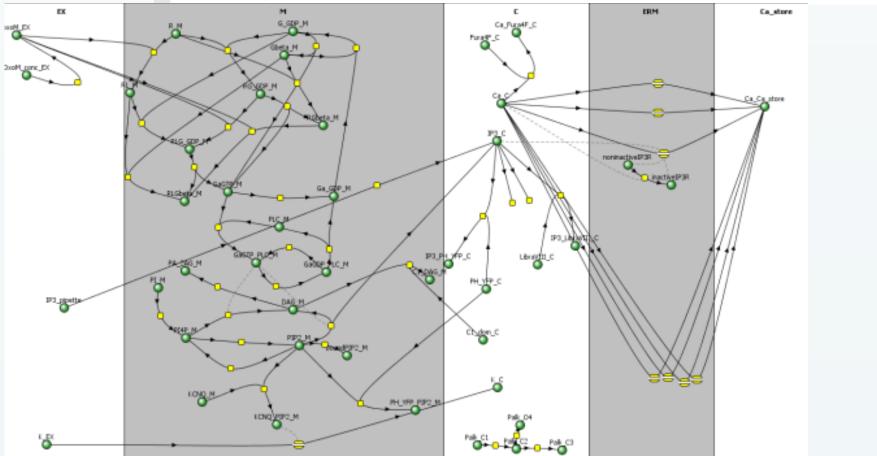
🔀 Geometry 🗬 Specifications 🗲 Protocols 📌 Simulations						
Simulations Output Functions Generated Math						
Choose View: O Math Equations	Refresh Math	Create Math Model				
19 Constant netValence 1.0;						
20 Constant Ran_cyt_diffusionRate 10.0;						
21 Constant Ran_cyt_init_uM 0.0;						
22 Constant RanC_cyt_diffusionRate 10.0;						
23 Constant RanC_cyt_init_uM 0.0;						
24 Constant RanC_nuc_diffusionRate 10.0;						
25 Constant RanC_nuc_init_uM 4.5E-4;						
26 Constant Voltage_nm 0.0;						
27 Constant Voltage_pm 0.0;		=				
28 Constant VolumePerUnitVolume_cyt 1.0;						
29 Constant VolumePerUnitVolume_EC 1.0;						
30 Constant VolumePerUnitVolume_nuc 1.0;						
	31					
32 VolumeVariable cytosol::C_cyt						
34 VolumeVariable cytosol::RanC_cyt	33 VolumeVariable cytosol::Ran_cyt					
35 VolumeVariable Vucleus::RanC_nuc						
36						
37 Function Nucleus_cytosol_membrane::J_flux0 (kfl * (RanC_cyt - RanC_nuc));						
37 Function Nucleus_cytosol_memorane::J_nux0 (Kf * Ranc_cyt - Ranc_nuc)); 38 Function cytosol::J_r0 ((Kf * RanC_cyt) - ((Kr * Ran_cyt) * C_cyt));						
39 Function cytosol::Size_cyt (VolumePerUnitVolume_cyt * vcRegionVolume('cytosol'));						
40 Function ec::Size_EC (VolumePerUnitVolume_EC * vcRegionVolume('ec'));						
41 Function Nucleus_cytosol_membrane::Size_nm (AreaPerUnitArea_nm * vcRegionArea('Nucleus_cytosol_mem	41 Function Nucleus_cytosol_membrane::Size_nm (AreaPerUnitArea_nm * vcRegionArea('Nucleus_cytosol_membrane'));					
42 Function Nucleus::Size_nuc (VolumePerUnitVolume_nuc * vcRegionVolume('Nucleus'));						
43 Function cytosol_ec_membrane::Size_pm (AreaPerUnitArea_pm * vcRegionArea('cytosol_ec_membrane'));						
44						
45 CompartmentSubDomain ec {						
46 BoundaryXm Flux 47 BoundaryXp Flux						
47 BoundaryXp Flux						
48 BoundaryYm Flux						
49 BoundaryYp Flux						
50 BoundaryZm Flux 51 BoundaryZp Flux						
51 Boundaryzp Flux		T				
	Search					

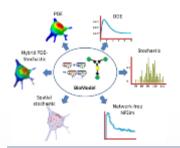
👹 BIOMODEL: RhoA sensor (Tue Jul 11 16:03:18 EDT 2017) VCell 6.2 (build 54)							
File Server Window Tools Help							
🚰 RhoA sensor 🗇 Reaction Diagram 💿 Reactions 💿 Structures 💿 Species 💿 Molecules 💿 Observables							
Physiology - ☆ Reaction Diagram	۴						
- 🗇 Reactions (17)	^						
- Structures (2) - Species (13) Cytosol PM							
_ ∩ Molecules (6) PM							
VCell DB BMDB Pathway Comm Sabio							
BioModels MathModels Geometries							
H Search							
Biological Models							
Shared BioModels (261)							
Public BioModels (583)							
Effector_unbound							
🕀 💼 a.m.belgrave : amtb-hw							
Big BbogaP GTP hydrolesis							
🗄 💼 a.m.belgrave : Microscopy Homework_amtb							
🗄 🛄 a.zoest_wpkeesboeke.nl : BE Syst Biol base model							
🕀 🛄 abiggiep : Formin FH1FH2-Profilin-Actin Elongation (public)							
🕀 🛄 abiggiep : Formin-PRF Polymerization (public)							
🕀 🧰 abiggiep : Formin-Profilin-Actin Polymerization							
🕀 🧰 ACowan : ASCB08							
E ACowan : ASCB08_2							
ACowan : BiochemII_Frap							
adverna : BE306Group10_Proj6_Prob1							
adverma : BE306Group10_Proj6_Prob3							
agolomy : 3D_platelet_cap							
B agolomy : C1 washout							
B agolomy : fX_platelet_binding + Cfector + Character ->							
General agolomy : fX_thrombus_binding General agolomy : fXii_activation							
agoomy: Ixi_activation							
allybern : BE306Group#10Proj#5Prob#2							
Alokendra : BE306CSM1_Unimolec_Irrev							
Alokendra : BE306CSM2_Bimolec_Rev							
Alokendra : BE306CSM2_Bimolec_Rev_Cooperativity							
Alokendra : BE306CSM4_Actin_Model_2							
Alokendra : BE306CSM4_Actin_Model_3							
Alokendra : BE306CSM5_Bistable_Switch							
Alokendra : BE306CSMR_BiMolec_Rev_Membrane							
A A A A A A A A A A A A A A A A A A A							
▲ III 319, MB /	906MB						

Public model from

Bertil Hille lab

National Resource for Cell Analysis and Modeling

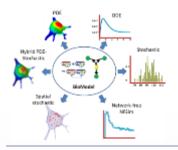

ModelBricks


JGP Home > 2013 Archive > 1 May > 141 (5): 537

Research Article

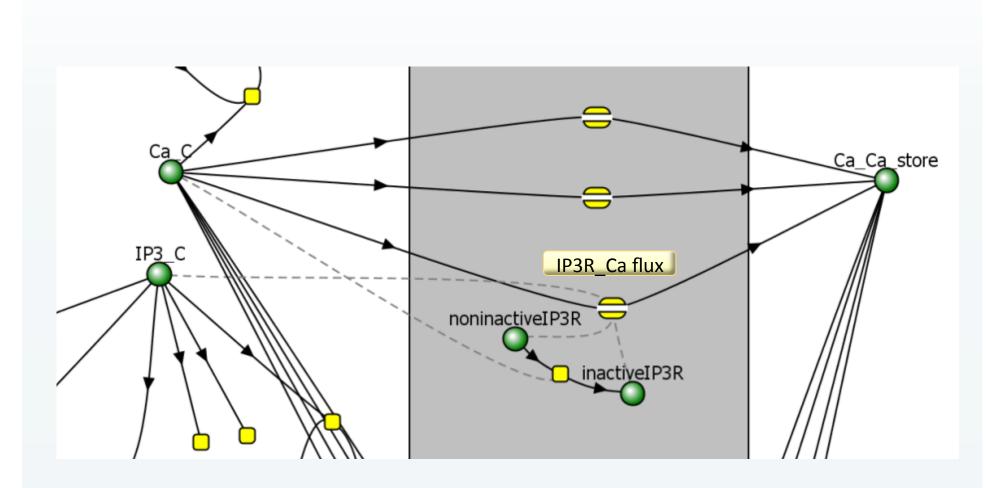
Quantitative properties and receptor reserve of the DAG and PKC branch of ${\rm G_q}\mbox{-}$ coupled receptor signaling

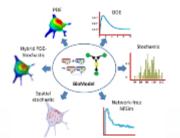
Björn H. Falkenburger, Earnonn J. Dickson, Bertil Hille



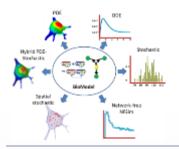
ModelBricks concept

- Containers for small, reusable VCell models that can be used in larger models
- Fully annotated
- Can be created by users and submitted for curation

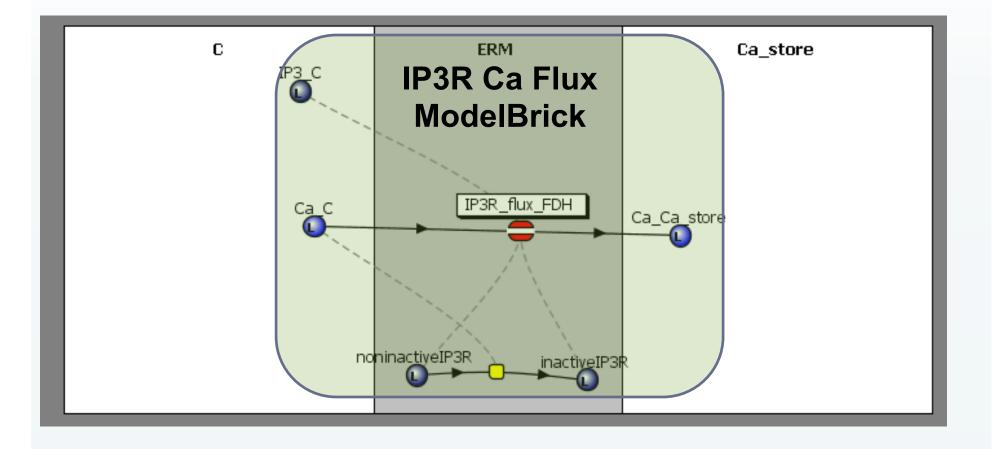

VCELL

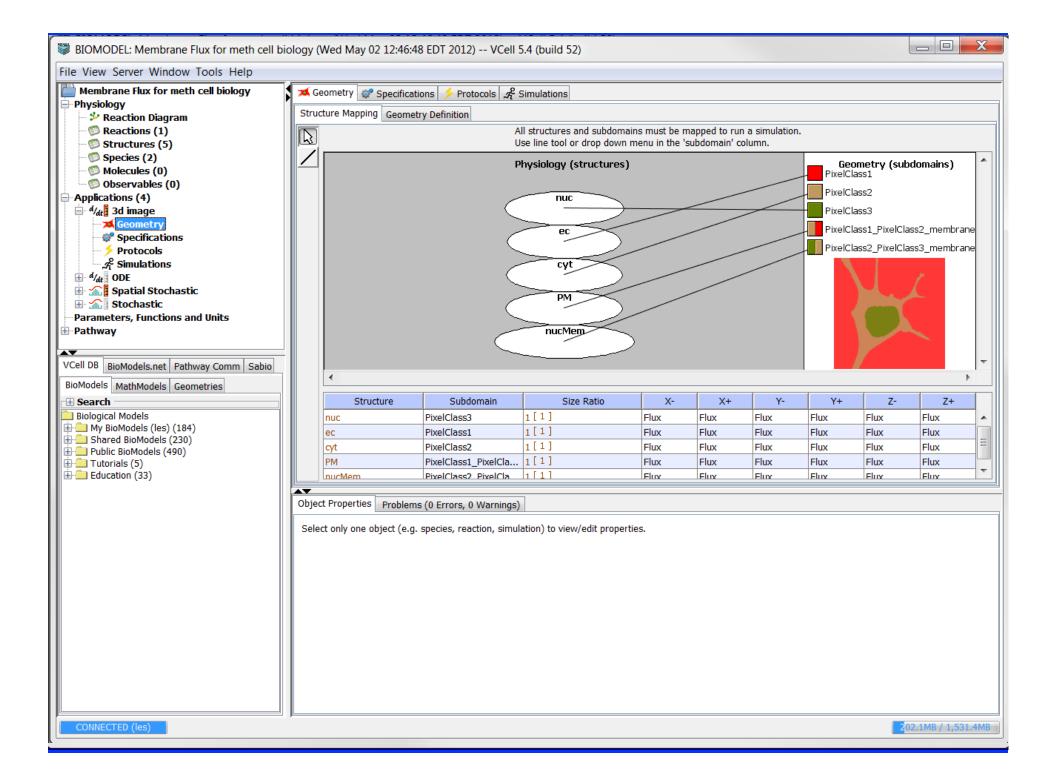

- Carry parameter information and citation information
- Provides an incentive for users to create ModelBricks
- Molecular details included, no ambiguity to the intended composition of the species
- Are VCell models, therefore can be stored in VCell database, searched and exported to other formats
- VCell API integration with website provides infrastructure to disseminate the ModelBricks

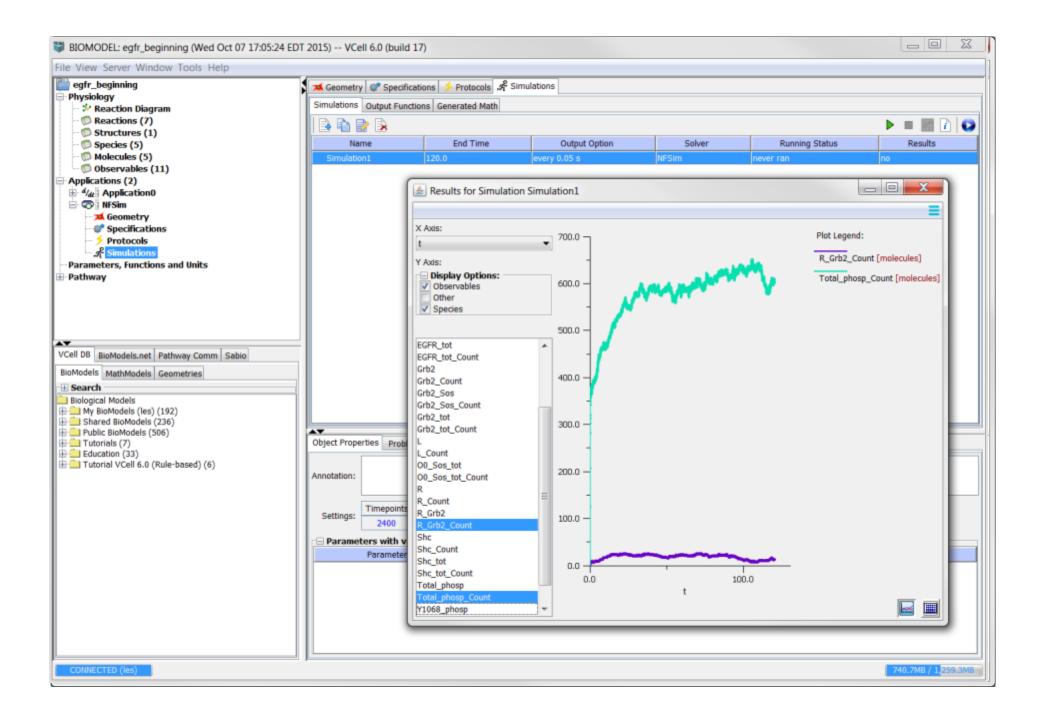
Vcell submodel



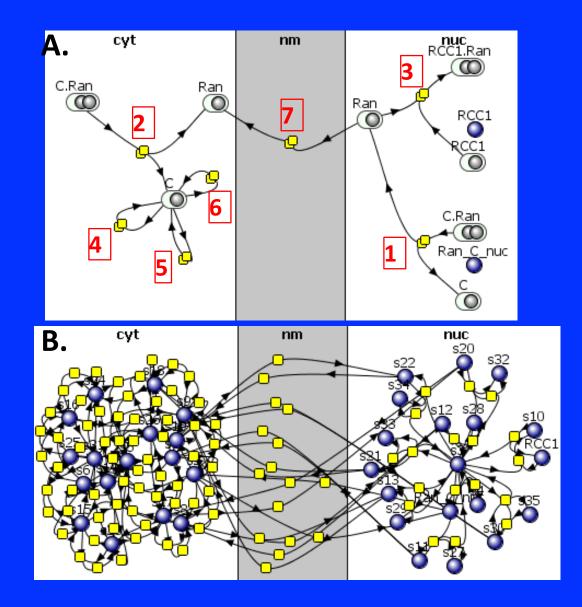
Defined kinetics


VCELL

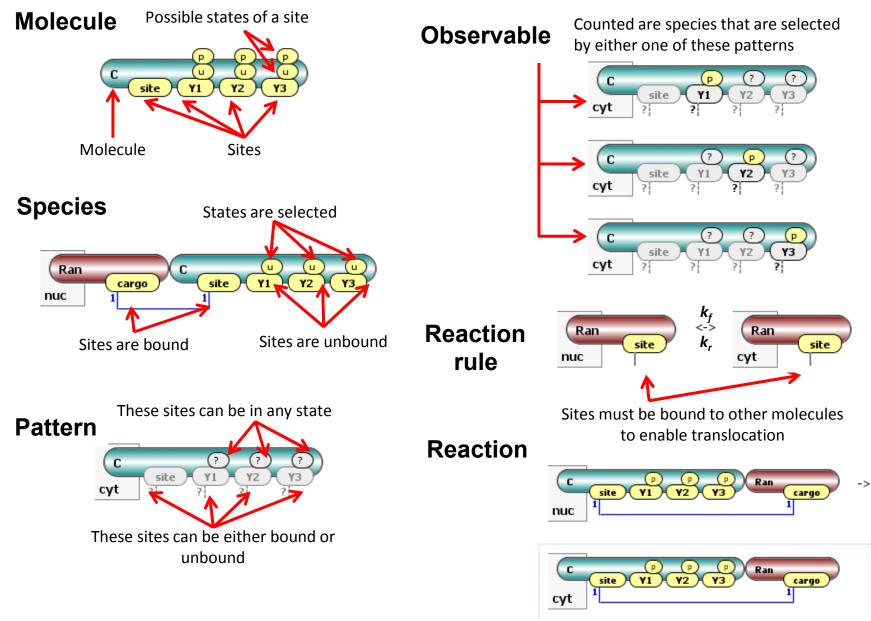

STP.M .	Ga_GDP_M		IP3 C IP3 C IP3R_flux_FDH noninactiveIP3R inactiveIP3R			
Delete Path	Delete Pathway Links Search					
Object Properties Pr						
Electrical Properties						
-						
Reversible 🗸	Reversible 📝 Kinetic Type General Flux Density (µM-µm/s)					
Name						
Name	Description	Global	Expression	Units		
J	Description reaction rate	Global	Expression - r_FDH · Jmax2 · (1.0 - <u>Ca_C</u>) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store (IP3_C + KD_IP3_IP3R) · (Ca_C + KD_act_Ca_IP3	3.0		
		Global		3.0		
J	reaction rate	Global	- r_FDH · Jmax2 · (1.0 - <u>Ca_C</u>) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store (IP3_C + KD_IP3_IP3R) · (Ca_C + KD_act_Ca_IP	3.0) µМ.µm.s ⁻¹		
J	reaction rate inward current density		-r_FDH · Jmax2 · (1.0 - <u>Ca_C</u>) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store (IP3_C + KD_IP3_IP3R) · (Ca_C + KD_act_Ca_IP 0.0	3.0) µМ.µm.s ⁻¹		
J I netValence	reaction rate inward current density net charge into 'Ca_store'		- r_FDH · Jmax2 · (1.0 - <u>Ca_C</u>) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store (IP3_C + KD_IP3_IP3R) · (Ca_C + KD_act_Ca_IP 0.0 0.0	3.0 3 <i>R</i>) / µМ.µm.s ⁻¹ рА.µm ⁻² 1		
J I netValence Jmax2	reaction rate inward current density net charge into 'Ca_store' user defined		- r_FDH · Jmax2 · (1.0 - <u>Ca_C</u>) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store) · (<u>IP3_C + KD_IP3_IP3R</u>) · (Ca_C + KD_act_Ca_IP. 0.0 0.0 200.0	3.0 3.7) 3.0 pA.µm.s ⁻¹ 1 µM.µm.s ⁻¹		
J I netValence Jmax2 r_FDH	reaction rate inward current density net charge into 'Ca_store' user defined Global Parameter		- r_FDH · Jmax2 · (1.0 - <u>Ca_C</u>) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store) · (IP3_C + KD_IP3_IP3R) · (Ca_C + KD_act_Ca_IP 0.0 0.0 200.0 1.0	3.0 3.7) pA.µm ⁻² 1 µM.µm.s ⁻¹ 1		
J I netValence Jmax2 r_FDH Ca_C	reaction rate inward current density net charge into 'Ca_store' user defined Global Parameter Species Concentration		- r_FDH · Jmax2 · (1.0 - Ca_C) · (<u>h · IP3_C · Ca_C</u> Ca_Ca_store) · (IP3_C + KD_IP3_IP3R) · (Ca_C + KD_act_Ca_IP. 0.0 0.0 200.0 1.0 Variable	3.0 3.7) 3.0 pA.µm.s ⁻¹ pA.µm ⁻² 1 µM.µm.s ⁻¹ 1 µM		
J I netValence Jmax2 r_FDH Ca_C Ca_Ca_store	reaction rate inward current density net charge into 'Ca_store' user defined Global Parameter Species Concentration Species Concentration		$-r_FDH \cdot Jmax2 \cdot (1.0 - \frac{Ca_C}{Ca_Ca_store}) \cdot (\frac{h \cdot IP3_C \cdot Ca_C}{(IP3_C + KD_IP3_IP3R) \cdot (Ca_C + KD_act_Ca_IPs})$ 0.0 0.0 200.0 1.0 Variable Variable Variable	3.0 3.7) 3.7) A.µm.s ⁻¹ pA.µm ⁻² 1 µM.µm.s ⁻¹ 1 µM µM		
J I netValence Jmax2 r_FDH Ca_C Ca_Ca_store h	reaction rate inward current density net charge into 'Ca_store' user defined Global Parameter Species Concentration Species Concentration Global Parameter		$-r_{F}DH \cdot Jmax2 \cdot (1.0 - \underbrace{Ca_{C}}_{Ca_{C}Ca_{s}tore}) \cdot (\underbrace{h \cdot IP3_{C} \cdot Ca_{C}C}_{(IP3_{C} + KD_{I}P3_{I}P3R) \cdot (Ca_{C} + KD_{a}ct_{C}a_{I}P3R)}$ 0.0 0.0 200.0 1.0 Variable Variable $\underbrace{noninactiveIP3R}_{(noninactiveIP3R + inactiveIP3R)}$	3.0 3.7) 3.0 pA.µm.s ⁻¹ 1 µM.µm.s ⁻¹ 1 µM.µm.s ⁻¹ 1 1 1 1 1 1 1 1 1 1 1 1 1		



IP3R Ca Flux ModelBrick



Demo 1



Rule-based vs. Full Reaction Network

Key Concepts for VCell Rule-based Modeling

Term	Purpose	Composition	Compartmental/Spatial features
Compartment	Cellular structure	A volume or a surface, corresponding to extracellular	For <i>Applications</i> without explicit geometries,
	containing species and reactions	regions, cytosol, organelles and their associated membranes. No specification of the relationship between compartments (such as enclosures or adjacency) is	compartmental sizes are specified as surface areas or volumes. For spatial <i>Applications</i> , compartments may be explicitly associated with
		required.	regions within a geometry.
Molecule	A building block for species.	Comprised of sites that can bind other sites between or within molecules. A site may also have multiple states. In this way, a molecule spawns a collection of chemical species – one per every combination of site occupancy and/or state.	Can be, optionally, anchored to one or more compartments. A species containing an anchored molecule can be located only in one of these compartments.
Species	An individual chemical species that may occur in the model.	Comprised of molecules that are connected through bonds between binding sites. All modification sites must be explicitly defined. A species can be a <i>seed species</i> (defined as initial condition and used as a seed for reaction rules application) or a generated species (a result of reaction rule application).	Every species is located in a unique compartment. Seed species are assigned to a compartment by the user. It may not contain molecules that are excluded from that compartment by anchoring to other compartments.
Pattern	Specifies a set of	Comprised of molecules. The states of sites may be left	Defined in a single compartment; all molecules
	possible states of species to be selected as participants in	unspecified; thus a pattern may select multiple species. Moreover, binding sites may have <i>implicit binding status</i> (<i>has external bond</i> or <i>may be bound</i>) where its binding partner is not explicitly defined. Such patterns may be	that comprise a pattern must be permitted to be located in this compartment.
	reaction rules and in observables.	inclusive of species that contain molecules not explicitly specified in a pattern but being possibly bound to molecules within it.	
Observable	Specify simulation outputs of interest.	Consists of one or more patterns that define features of species. The result is the total population (concentration or count) of multiple species.	Defined in a single compartment; all molecules that comprise an observable must be permitted to be located in this compartment.
Reaction rule	Defines transformation of multiple species at once, generating multiple reactions	Species to be transformed are selected by reactant pattern(s). Product pattern(s) define the end result of transformation. Product may differ from reactant by re- assigning molecules, adding or deleting bonds and changing site states. A kinetic expression is also a component of a reaction rule.	Reaction rule is defined in a single compartment. Each reactant pattern and each product pattern are assigned a specific compartment, which may be different from compartment for reactants or products.

 $k_f [C.Ran_{nuc}] - k_r [C.Ran_{cyt}]$

